Characterization of the trans-activation properties of equine herpesvirus 1 EICP0 protein.
نویسندگان
چکیده
The EICP0 protein of equine herpesvirus 1 (EHV-1) is an early, viral regulatory protein that independently trans-activates EHV-1 immediate-early (IE), early, gamma1 late, and gamma2 late promoters. To assess whether this powerful trans-activator functions in conjunction with three other EHV-1 regulatory proteins to activate expression of the various classes of viral promoters, transient cotransfection assays were performed in which effector plasmids expressing the EICP22, EICP27, and IE proteins were used either singly or in combination with an EICP0 effector construct. These analyses revealed that (i) independently, the EICP0 and IE proteins are powerful trans-activators but do not function synergistically, (ii) the IE protein inhibits the ability of the EICP0 protein to trans-activate the IE, gamma1 late, and gamma2 late promoters, (iii) the EICP22 and EICP0 proteins do not function together to significantly trans-activate any EHV-1 promoter, and (iv) the EICP27 and EICP0 proteins function synergistically to trans-activate the early and gamma1 late promoters. A panel of EICP0 truncation and deletion mutant plasmids was generated and used in experiments to define the domains of the 419-amino-acid (aa) EICP0 protein that are important for the trans-activation of each class of EHV-1 promoters. These studies revealed that (i) carboxy-terminal truncation mutants of the EICP0 protein exhibited a progressive loss of trans-activating ability as increasing portions of the carboxy terminus were removed, (ii) the amino terminus of the EICP0 protein containing the RING finger (aa 8 to 46) and the acidic region (aa 71 to 84) was necessary but not sufficient for activation of all classes of EHV-1 promoters, (iii) the RING finger was absolutely essential for activation of EHV-1 promoters, since deletion of the entire RING finger motif (aa 8 to 46) or a portion of it (aa 19 to 30) completely abrogated the ability of these mutants to activate any promoter tested, (iv) the acidic region contributed to the ability of the EICP0 protein to activate the early and gamma1 late promoters, and deletion of the acidic region enhanced the ability of this mutant to activate the IE promoter, (v) the carboxy terminus (aa 325 to 419), which is rich in glutamine residues, was dispensable for the EICP0 trans-activation function, (vi) a motif resembling a nuclear localization signal (aa 289 to 293) was unnecessary for the EICP0 protein to trans-activate promoters of any temporal class, and (vii) the EICP0 protein was phosphorylated during infection, and deletion of the serine-rich region (aa 210 to 217), a potential site for phosphorylation, reduced by more than 70% the ability of the EICP0 protein to activate the gamma2 late class of promoters.
منابع مشابه
Interaction of the equine herpesvirus 1 EICP0 protein with the immediate-early (IE) protein, TFIIB, and TBP may mediate the antagonism between the IE and EICP0 proteins.
The equine herpesvirus 1 (EHV-1) immediate-early (IE) and EICP0 proteins are potent trans-activators of EHV-1 promoters; however, in transient-transfection assays, the IE protein inhibits the trans-activation function of the EICP0 protein. Assays with IE mutant proteins revealed that its DNA-binding domain, TFIIB-binding domain, and nuclear localization signal may be important for the antagonis...
متن کاملThe ICP0 protein of equine herpesvirus 1 is an early protein that independently transactivates expression of all classes of viral promoters.
To assess the role of the equine herpesvirus type 1 (EHV-1) ICP0 protein (EICP0) in gene regulation, a variety of molecular studies on the EICP0 gene and gene products of both the attenuated cell culture-adapted Kentucky A (KyA) strain and the Ab4p strain were conducted. These investigations revealed that (i) the ICP0 open reading frame (ORF) of the KyA virus strain is 1,257 bp in size and woul...
متن کاملThe unique IR2 protein of equine herpesvirus 1 negatively regulates viral gene expression.
The IR2 protein (IR2P) is a truncated form of the immediate-early protein (IEP) lacking the essential acidic transcriptional activation domain (TAD) and serine-rich tract and yet retaining binding domains for DNA and TFIIB and nuclear localization signal (NLS). Analysis of the IR2 promoter indicated that the IR2 promoter was upregulated by the EICP0P. The IR2P was first detected in the nucleus ...
متن کاملFunctional Characterization of the Serine-Rich Tract of Varicella-Zoster Virus IE62.
UNLABELLED The immediate early 62 protein (IE62) of varicella-zoster virus (VZV), a major viral trans-activator, initiates the virus life cycle and is a key component of pathogenesis. The IE62 possesses several domains essential for trans-activation, including an acidic trans-activation domain (TAD), a serine-rich tract (SRT), and binding domains for USF, TFIIB, and TATA box binding protein (TB...
متن کاملEquine herpes virus type 1 (EHV-1) and 4 (EHV-4) infections in horses and donkeys in northeastern Turkey
The herpesviruses infections in equides are caused by five different serotypes of viruses, belonging to family Herpesviridae. The goal of this study was to conduct a seroepidemiological investigation of equine herpesvirus type 1 (EHV-1) and type 4 (EHV-4) in horses and donkeys raised in two provinces and their villages in northeastern Turkey. A total of 666 samples from 423 horses and 243 donke...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 74 3 شماره
صفحات -
تاریخ انتشار 2000